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Optically active gem-dimethylcyclopropane-fused com-
pound was synthesized by a tandem reaction consisting of
chemo-, regio-, and stereoselective cyclopropanation of a 4-
substituted 7,7-dimethylcycloheptatriene with an internal diazo
ester and following stereospecific rearrangement.

gem-Dimethylcyclopropane is one of key structures of
natural terpenes.! We have been studying synthesis of gem-
dimethylcyclopropane-fused compounds 1 from 2 by using
tautomerization of 3,4-homotropilidene® (bicyclo[5.1.0]octa-
2,5-diene).>* The conversion through the tautomerization is
practically irreversible, and thus, regioselective cyclopropanation
of 3 should present a handy method for synthesis of 1. However,
the product 1 is more reactive toward the carbenoid than 3, and 1
cannot be obtained even in a low yield. Synthesis of 1 could only
be achieved by a stepwise process using dihalocyclopropanation
to inhibit the tautomerization during the reaction.’

Another tactics to address the overreaction problem is
incorporation of a carbenoid into 3 at the R group. With this
reaction design, intramolecular addition of 3 becomes favorable
over the intermolecular reaction with 1. This is successfully
attained when a diazo ester, a precursor of carbenoids, is tethered
to 3 with (2R, 4R)-2.,4-pentanediol. The chiral tether also provides
a chiral synthon in a high stereoselectivity.’ The results will be
summarized in this communication.
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Acetal 4 (>99% pure) was converted to cycloheptatriene 5 by
the reported method,* and the ensuing introduction of diazo
acetate to 5 resulted in substrate 6 (Scheme 2). When 6 was treated
with a catalytic amount of Rhy(OAc), in dichloromethane (0.1 M
of 6) at room temperature,® the desired intramolecular cycloaddi-
tion and the succeeding rearrangement proceeded smoothly to
give 8 in 70% yield after silica gel column chromatography.’
Since no isomeric product other than 8 was detected (<1%)
before or after the purification, the carbenoid addition of 6 must be
sufficiently stereoselective in addition to the stereospecific and
practically irreversible rearrangement of 7. Stereochemistry of 8
was determined to be 8S by 'H NMR, where NOE enhancement
was observed between the peaks of H8 and HI11 (12%).
Stereochemistry of the corresponding intermediate 7 shown in
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Scheme 2. Reagents and conditions. a: pyridinium perbromide,
b: potassium tert-butoxide (6 equiv.)/KI/DMSO (59.0% for two
steps), c: diketene/triethylamine (85.4%), d: tosyl azide/triethyl-
amine and then 1M NaOH aq./12h (93.1%), e: Rhy(OAc),4 in
dichloromethane (69.7%).

Scheme 28 is that expected from the stereodirection of (2R, 4R)-
2,4-pentanediol tether.’

Three functional groups of 8, ester, enol ether and olefin, are
convenient for conversion of 8 to various gem-dimethylcyclo-
propane compounds, while existence of these groups may reduce
stereochemical stability of 8 at the C8 position; e.g. epimerization
to give 9. However, 8 is relatively stable under basic conditions,
and isomerization occurred to give a conjugated regioisomer 10,
only when 8 was heated with DBU (50°C, 86.1% yield).
Stereoisomer 9 was accidentally obtained. When 8 was heated to
110°C in toluene with 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-
dione and Cul catalyst aiming at cycloaddition,” 9 was produced
in a ratio of 9/8 = 1.5-2.5, while formation of 10 was negligible.
Conversion of 9 to 10 was easily carried out by treatment with
either acid or base.

PM3 calculations show that 9 and another regioisomer 11
have similar thermochemical stability to 8, while 10 is more stable
by ca. 8 kcalmol~! (Figure 1). Stereochemical instability of 8 is
governed by its kinetic acidity, and the acidity is due to
conjugation of a developing carbanion with the C=0 and C=C
double bonds on deprotonation. In turn, the dihedral angles
between a C8—H bond and the unsaturated bonds of 8 indicate
degree of the instability; the most unstable at 90° and stable at O or
180°.'0 Such angles in a stable conformation calculated for 8 and
9 are given in Figure 1, suggesting that effects of the carbonyl
substituent on the acidity are similar between 8 and 9, while those
by the vinyl groups are larger in 9 than in 8. Thus, kinetic acidity
of 8 is expected to lower than 9. In reverse, protonation of a
common enolate (or enol) of 8 and 9 should give 9 preferentially
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(-80.63) (-80.23) (-88.60) (-79.63)
8 9
H—C8—C9=0 132.2 128.7

H—C8—C1=C2 168.9 57.2
H—C8—C7=C6 169.4 53.7
Figure 1. Heats of formation of 8 and its isomers by PM3
calculation are shown in parentheses (kcalmol™!). Dihedral
angles of 8 and 9 are also shown (degree).

under kinetically controlled conditions.!!

A Dbase-insensitive analogue of 8 can be prepared by
reduction of 8 with lithium aluminum hydride to give stereo-
chemically pure 12 (Scheme 3). Acid treatment of 12 produced a
more stable analogue 13. Hydrolysis after a protection of the
hydroxy group afforded stereochemically pure ketone 14. It
should be noted that ketone 14 is stereochemically fragile and
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Scheme 3. Reagents and conditions. a: lithium alminium hy-
dride (98.1% yield), b: pyridinium p-tosylate in dichlorome-
thane/rt (100%), c: methoxymethyl chloride/
ethyldiisopropylamine/THF (83.2% from 13, or 36.1% of 14
and 40.0% of 15 after deacetallization of 13), d: 2M HCI in
acetone (91-98%), e: diethylzinc (5 equiv.)/diiodomethane (10
equiv.) in ether (38.0%).
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reversal of the two last steps resulted in epimerization to give a
mixture of 14 and 15. Stability of 12 was found to be enough for
cyclopropanation reaction with zinc carbenoid to give 16 as a
single isomer.

In conclusion, asymmetric synthesis of gem-dimethylcyclo-
propane-fused compounds as sufficiently stable chiral synthons
was established utilizing an intramolecular cyclopropanation and
tautomerization of 3,4-homotropilidene. Synthetic studies start-
ing with 12 are now in progress.
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